Problem 1 (Analysis of a Continuous-Time Feedback System)

Consider the feedback system defined by the continuous-time LTI plant \(P = \frac{1}{s-1} \), series compensator \(K = \left[\frac{9(s+30)}{s} \right] \left[\frac{100}{s+100} \right] \), pre-filter \(W = \left[\frac{25}{s+5} \right] \), and sensor dynamics \(H = 1 \).

(a) Determine the (approximate) closed loop transfer functions \(T_{ry}, T_{dy} \). What are the closed loop poles, the associated time constant \(\tau \), settling time \(t_s \). What is the system settling time?

(b) What is the (approximate) linear ordinary differential equation relating \(y \) to \(r \) and \(d_i \)?

(c) Approximate the output \(y \) when \(r = 10 + 2 \sin(0.1t - 30^\circ) \) and \(d_i = 2 - \cos(0.1t + 45^\circ) \). Show how to compute all coefficients.

(d) Approximate the steady state output \(y_{ss} \) for the scenario in (c).

(e) Sketch a carefully labeled root locus for the above system. Determine all imaginary crossovers. Clearly label all asymptotes.

(f) Sketch \(|L| \) versus frequency.

HOME:

For (a), determine the damping factor \(\zeta \). What is the overshoot to a step command \(M_p \) and the time to peak \(t_p \) for a step command? Plot the response \(y \) to a step \(r \).

For (c), use Simulink to plot \(y \).

For (e), determine the cg for the root locus. Provide a complete stability summary. Compute the upward and downward gain margins \(\uparrow GM, \downarrow GM \).

For (f), provide a complete Bode magnitude and phase plots. Compute the associated phase and delay margins \(PM, DM \). Clearly show \(\uparrow GM, \downarrow GM, PM \) on your plots.

(g) Suppose \(L(j\omega_1) = \frac{1}{1+L}, L(j\omega_2) = \frac{1}{1+L}, L(j\omega_3) = e^{j(M-\omega_0)} \). Let \(S = \frac{1}{1+L} \) and \(T = 1 - S = \frac{T}{1+L} \). Determine \(S(j\omega_1), T(j\omega_1), S(j\omega_2), T(j\omega_2) \). Given the above, determine a lower bound for \(\|S\|_{\infty} \) and \(\|T\|_{\infty} = \max_{\omega} S(j\omega) \) and \(\|T\|_{\infty} = \max_{\omega} T(j\omega) \) ?

Problem 2 (Analysis of a Discrete-Time Feedback System)

Suppose that the above system is discretized with a sampling rate \(\omega_s = 600 \text{ rad/sec} \) using Tustin’s discretization method (trapezoidal rule/bilinear transformation). Consider the feedback system defined by the discrete-time LSI plant \(P_d = 0.005264 \left[\frac{z+1}{z-1.011} \right] \), series compensator \(K_d = 1.0783 \left[\frac{z-0.9714}{z-1} \right] \left[\frac{z+1}{z-0.9714} \right] \), pre-filter \(W_d = 0.01431 \left[\frac{z+1}{z-0.9714} \right] \), and sensor dynamics \(H_d = 1 \).

(a) Determine the (approximate, “low frequency”) closed loop transfer functions \(T_{ry}, T_{dy} \). What are the approximate closed loop poles? 1% settling time?

(b) What is the (approximate) linear ordinary differential equation relating \(y \) to \(r \) and \(d_i \)?

(c) Approximate the output \(y_n \) when \(r_n = 10 \) and \(d_{i_n} = \cos(0.1nT + 45^\circ) \). Show how to compute all coefficients.

(d) Approximate the steady state output \(y_{ss} \) for the scenario in (c).

(e) Sketch a carefully labeled root locus for the above system. Use all poles and zeros! Determine all unit circle (\(|z| = 1 \)) crossovers.

(f) Sketch \(|L_d| \) versus frequency. Compare with \(|L| \).

HOME:

Use MATLAB to compute everything exactly.
Problem 3 (Continuous-Time Design)
Consider the continuous-time LTI plant \(P = \frac{1}{(s-2)(s+6)} \left[\frac{100}{s+100} \right]^4 \). Design a control system such that the closed loop system (1) is stable, (2) exhibits zero steady state error to step input disturbances \(d_i \), (3) has dominant closed loop poles at \(s = -4 \pm 3j \), (4) attenuates the impact of high frequency sensor noise on the controls, and (5) minimizes the effect of output overshoot when a step reference command is issued. Support your design with a simple root locus plot.

HOME:
Use MATLAB to plot Bode plots for \(|L|, \angle L, |S|, |T|, |KS|, |PS|, |Tr_p| \). Show Discuss low frequency command following, low frequency disturbance attenuation, and high frequency noise attenuation. What are the closed loop poles? Plot the response to a step reference command. What is the percent overshoot? Compute all margins.

Problem 4 (Discretization)
Consider the continuous-time LTI system \(L = \left[g s \left(s + a \right) \right] \left[cs - \frac{c}{s} \right] \) with \(a = g = 2 \) and \(c = 20 \).
(a) Sketch a root locus. Determine imaginary crossovers. What are the closed loop poles? settling time?
In this problem, you will be discretizing \(L \) using a sampling frequency \(\omega_s = 120 \text{ rad/sec} \) \((T \approx 0.05) \).
(b) Discretize \(L \) using the bilinear transformation.
(c) Sketch a discrete-time root locus for the \(L_d \) obtained in (b). Determine unit circle crossovers. What are the closed loop poles?
(d) Sketch \(|L(j\omega)| \) and \(|L_d(e^{j\omega T})| \) versus frequency \(\omega \).
(e) Show that \(\lim_{T \to 0} L_d(e^{sT}) = L(s) \) for a fixed \(s \).

HOME:
(f) How small can \(\omega_s \) be made before the discrete closed loop system goes unstable?
(g) Use the step invariant method to repeat (b)-(f). Which method can tolerate a smaller \(\omega_s \) before the discrete-time closed loop system goes unstable?

Problem 5 (Discrete Control System Design)
Suppose that we have a discrete-time LSI plant \(P_d = \frac{1}{z-0.5} \). Design a feedback control system such that the closed loop system (1) is stable, (2) exhibits zero steady state error to step output disturbances \(d_o \), (3) exhibits closed loop poles of \(z = \frac{1}{2} e^{j\frac{\pi}{4}} \), (4) attenuates the impact of high frequency sensor noise on the controls (near Nyquist rate), (5) reduces overshoot in output when a step command is issued. Support your design with a simple root locus plot.

HOME:
Use MATLAB/Simulink to plot the response to a step reference command. What is overshoot to a step command?

Problem 6 (Control System Design for Overshoot and Settling Time)
Suppose that we have a plant \(P = \frac{1}{s(s+1)} \left[\frac{100-s}{s+100} \right]^2 \left[\frac{10^3}{s+10^7} \right]^4 \). Design a feedback control system such that the closed loop system (1) is stable, (2) exhibits zero steady state error to ramp output disturbances \(d_o \), (3) exhibits a settling time of approximately \(t_s = 5 \) sec to step commands, (4) exhibits an approximate overshoot of 9.5% when a step command is issued, (5) attenuates the impact of high frequency sensor noise on the controls. Support your design with a simple root locus plot.

Problem 7 (Control System Design for BW and PM)
(a) Nominal Design. Suppose that we have a plant \(P = P_o = \frac{1}{s^2(s-1.5)(s+3)^2} \left[\frac{6}{s+2} \right]^2 \left[\frac{30-s}{s+30} \right]^4 \left[\frac{10^3}{s+10^7} \right]^2 \). Design a feedback control system such that the closed loop system (1) is stable, (2) exhibits zero steady state error
to ramp input disturbances d_t, (3) exhibits a unity gain crossover of $\omega_g = 3 \text{ rad/sec}$, (4) exhibits a phase margin $PM = 60^\circ$. Support your design with a simple root locus plot, (5) high frequency sensor noise has little impact on the controls, (6) overshoot to a step reference command is minimized.

(b) Robustness. Now suppose that $P = P_o \left[\frac{0.5\Omega_s}{s+0.5\Omega_s} \right] e^{-s\tau} \Omega_s = k\omega_g$ and $k > 0$. Assuming that the control system designed in (a) is used with P, how small can k be reduced before the phase margin is reduced to 30°?

(c) New Design. Design a new control system that guarantees the original design specifications for the new plant P with the k determined in (b).

EXTRA CREDIT: Suppose we also wanted zero steady state error to a sinusoidal input disturbances d_i? How would you alter your design? Explain.

Problem 7 (Analysis of a Discrete-Time Feedback Control System)
Consider a plant $P = \frac{1}{z}$ and controller $K = \frac{z}{z-1}$ within a classic negative feedback configuration. (a) Compute T_{ry}. (b) Determine the closed loop poles. Discuss the stability of the closed loop system. (c) Determine and explain the dc gain for T_{ry}. (d) Determine y when r is a unit step. (e) Determine r such that $y_{ss} = 1 + \sin\left(\frac{\pi}{2}n - 45^\circ\right)$ when $d_i = \sin(0.01n + 30^\circ)$. (f) Plot a root locus for $L = PK$. Determine break points and unit circle crossovers.