Problem 1 (Control System Design)

(a) **Design.** Suppose that we have a plant \(P = \frac{1}{s-2} \left[\frac{500-s}{s+500} \right]^5 \). Design a feedback control system such that the closed loop system (1) is stable, (2) exhibits zero steady state error to step \(r \), (3) exhibits a settling time to step commands \(r \) of \(t_s \approx 20 \), (4) overshoot close to 17\% when a step command is issued. (5) impact of high frequency noise on control is minimized.

(b) **Bode.** Sketch Bode magnitude and phase plots for the open loop transfer function \(L \) above. Identify the upward gain margin \(\text{Gm} \), downward gain margin \(\text{DGm} \), phase margin \(\text{PM} \), and associated frequencies on your plots. Compute all gain, phase and delay margins and the associated frequencies.

(c) **Root Locus.** Sketch a root locus. Compute all imaginary crossovers and angles of asymptotes.

(d) **Bounds for \(S \) and \(T \).** Given the margins for your design, determine lower bounds for the peak sensitivity \(S \) and complementary sensitivity \(T \).

(e) **Bounds for Margins.** Suppose the peak sensitivity \(S \) and complementary sensitivity \(T \) are bounded above by \(\alpha \) and \(\beta \) (both \(\geq 1 \)), respectively. What can be said about the associated gain and phase margins? What if \(\alpha = \beta = 1 \)?

Problem 2 (Model Based Compensator Design)

Consider a plant \(P = \left[\frac{s-z}{s-p} \right] = [A_p, B_p, C_p, D_p] = [p, z - p, 1, -1] \) with \(z = 10 \) and \(p = 2 \). (a) Show how to design a (model-based) control system such that the closed loop system (i) is stable, (ii) exhibits zero steady state error to step output disturbances, (iii) exhibits a settling time of approximately 10 sec, (iv) exhibits an overshoot of approximately 10\%, (v) attenuates the impact of high frequency sensor noise on the controls.

Support your design with a rough root locus plot. Just show how to set up the problem. You need not solve the equations. (b) Let \((A_k, B_k, C_k) \) denote the state space representation for the final controller \(K \). Determine the state space representation for the closed loop system from \((r, d, d_a, n) \) to \((x_p, x_k) \), \((y, u) \).

Problem 3 (LQ Properties) For each case explain you answer. Provide \((A, B, M, \rho, G) \) when applicable.

(a) Can \(L = \frac{40}{s-2} \) be an LQ loop? (b) Can \(L = \frac{3}{s-3} \) be an LQ loop? (c) Can \(L = \frac{5}{s-2} \) be an LQ loop? (d) Can \(L = \frac{s}{s-3} \) be an LQ loop? (e) Can \(L = \frac{s+1}{s^2} \) be an LQ loop? (f) Can \(L = \frac{1}{s+1} \left[\frac{1000-s}{s+1000} \right] \) be an LQ loop?

(g) Can \(L = \frac{5(s+1)}{s(s-1)} \) be an LQ loop? (h) Can \(L = \frac{2(s+1)}{s(s-1)} \) be an LQ loop?

Problem 4 (LQ Servo)

Consider \(P_o = \left[\frac{s-z}{s-p} \right] \). (a) Show how to design an LQ servo that will guarantee zero steady state error to step reference commands. Clearly explain the process. Sketch a relevant LQ servo block diagram. Please specify the Riccati gain matrix \(K_p \) and the control gain matrix \(G_p \). Hint: \(J = \int_0^\infty (y^2 + pu^2) \) dt, \(y = Mx \). Now suppose \(a = 2, z = 20, \rho = 1 \). (b) Determine \(G_o \) for \(\rho = 1 \). Compute \(G_{LQ} \) and the associated phase margin \(\text{PM} \). (c) Plot a root square locus for your \(G_{OL} \). (d) Determine \(K_p \) and \(G_p \) for \(\rho \to 0, \rho \to \infty \). Explain each!

Problem 5 (Small Gain Theorem)

Consider a negative feedback control system with nominal plant \(P_o = \frac{1}{s} \) and controller \(K = 2 \left[\frac{s-z}{s-p} \right] \). Consider a truth plant \(P = P_o \left[\frac{1600}{s^2 + 80\zeta s + 1600} \right] \) with \(\zeta > 0 \). (a) What is the minimum damping factor \(\zeta \) for the closed loop system to be on the verge of instability? (b) What do the 4 associated (additive, multiplicative, divisive, feedback) small gain theorem tests tell us? Please show all relevant Bode plots and discuss what each test implies.

Problem 6 (Loop Transfer Recovery at the Plant Input)

(a) Give a sufficient condition on the plant \((A, B, C) \) for LTRI. (b) Prove LTRI.